Stochastic Processes with Balking in the
Theory of Telephone Traffic*

By LAJOS TAKACS

(Manuseript received January 16, 1961)

It is supposed that at a telephone exchange calls are arriving according
lo a recurrent process. If an incoming call finds exactly j lines busy then
it either realizes a connection with probability p, or balks with probability
q; (p, + q; = 1). The holding times are mutually independent random
variables with common exponential distribution. I'n this paper the stochastic
behavior of the fluctuation of the number of the busy lines is studied.

I. INTRODUCTION

Many results in telephone traffic theory (and elsewhere) may be
unified by the introduction of balking. A call is said to balk if for any
reason it refuses service on arrival. A mathematical model for balking is
constructed by assigning a probability to balking dependent only on the
state of the system; if an incoming call finds exactly j lines busy, then
it realizes a connection with probability p; and balks with probability
g; (p;i +q,=1). Thusif p, = 1 (7 = 0, 1, - --) the system is one with
an infinite number of lines and with no loss and no delay, the ideal for
for any service, while if p; = 1 (7 = 0,1, ---, m — 1) and p; = 0
(7 =m,m 4+ 1, ---) the system is a loss system with m lines.

This balking model is examined here for recurrent input and expo-
nential distribution of holding times. More specifically, the call arrival
times are taken as the instants =, 72, -+, 7a, - -+, where the inter-
arrival times 6, = 7y41 — ™ (n = 0,1, ---; 7p = 0) are identically
distributed, mutually independent, positive random variables with dis-
tribution funetion

P, < 2} = F(x). (1)

* Dedieated to the memory of my professor Charles Jordan (December 16,
1871-December 24, 1959)
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The holding times are identically distributed, mutually independent
random variables with distribution function

1—e™ ifa =0,
H(z) = {0 ifz < 0. (2)

The holding times are independent of the {7} as well.

Let us denote by £(¢) the number of busy lines at the instant ¢{. De-
fine*, = £ (7, — 0); thatis, &, is the number of busy lines immediately
before the arrival of the nth call. The system is said to be in state Ky
at the instant ¢ if £(¢) = k. Let us denote by m the smallest nonnegative
integer such that p, = 0. If p, > 0(; =0,1,2, ---) then m = oo,

In the present paper we shall give a method to determine the dis-
tribution of &, for every n, the distribution of £(¢) for finite ¢ values,
and the limiting distributions of &, and £(¢) as n — o and { — « re-
spectively. Ffurther, we shall determine the stochastic law of the transi-
tions £y — Ky (B =10,1,2, ---).

II. NOTATION

The Laplace-Stieltjes transform of the distribution function of the
interarrival times will be denoted by

o(s) = E{e™") = f: e " dF(x),

which is convergent if ®@(s) = 0. The expectation of the interarrival
times will be denoted by

« = El6,] = fm v dF(z).
Let Pl£, = k) = P, and P{£(1) = k] = Pu(¢). Define
IM:.(s) = jm e *'PL(0) di,
1]

which is convergent if ®(s) > 0. Let
lim P, = Py and lim P(t) = P¥,

n-—»C t»o0

provided that the limits exist.
Define

Cr:ﬁ(ﬂ_> (T=0,I,2,), (3)
i1 \1 — e(in)
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where the empty product means 1; that is, Cp = 1. We shall also use
the abbreviation

oo =olm) = [ A =012, @)

Denote by M, (t) the expected number of calls occurring in the time
interval (0,¢] which find exactly % lines busy. The expected number of
transitions K, — FEiy occurring in the time interval (0,f] is clearly
peM i (t). Denote by Ni(f) the expected number of transitions Fy. — Ej
oceurring in the time interval (0,].

Let Ge(2)(k = 0,1, 2, ---) be the distribution function of the time
differences between successive transitions K, — F and E, — Ei,
while R.(2)(k = 0, 1, 2, ---) is the distribution function of the time
differences between consecutive transitions Ep — Ep . If £0) = 0
then we say that a transition £_, — F, takes place at time { = —0.
Write

vi(s) = j:c e dG(x)
and

pr(8) = f: e dRy(x)
which are convergent if ®(s) = 0.

III. PREVIOUS RESULTS

3.1 A. K. Erlang

Erlang' has proved that, if {r,} forms a Poisson process of intensity
A—that is, F(2) = 1 — ¢ for x = 0—and further, p; = 1 when j < m,
p; = 0 when j = m, then

(N/p)E
k!
Pk*=m (k=0,1,--+,m). (5)
%

In this case PP, = P* (k = 0, 1, - - -, m) also holds. This is the simplest
loss system.
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3.2 Conny Palm

Palm® has generalized the above result of Erlang for the case when
{r.} forms a recurrent process and otherwise every assumption remains
unchanged. Palm has proved that

1

P = m, (6)

r=0

where C, is defined by (3). In this case the complete limiting distribu-
tions {P:} and {P;*} have been determined by Pollaczek,® Cohen,* and
the author.”® The transient behavior of the sequence {£,] was determined
by Pollaczek® and Bene$,” and the transient behavior of the process
{£(1)} by Benes® and by the author.’

3.3 The Infinite Line Case

The case when p, = 1 (7 = 0, 1, 2, ---) has Leen investigated Ly the
author," " who has proved that
Pk=Z<~1)’""(;‘c)0, (k=012 ) (7)
r=k
and, if #(2) is not a lattice distribution and if & < o, then the limiting
distribution | P:*} exists and

- Pk_‘
kau

P* =1 ;lz
QU E=1

P (k=1,2,.--),

(8)

ol

k-1
kB

The transient behavior of the process {£(1)] is also treated in Refs. 10
and 11.

34 TheCasepy = 1,0, =p(Gi=1,2 - ). q=q(G =12 --+)

This case, where p + ¢ = 1, plays an important role in the theory of
particle counters and has been investigated by the author,” who has
found that

p i (_p)fcr
PO — r=()w (9)
L—g¢2 (=p)C,
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and

> (=0t (,)
P, = —* ~ - (k=1,2 ). (10)
l - QZ (_P)f(rr

r=A0

If F(x) is not a lattice distribution and if & < o, then the limiting
distribution | P;*} exists and

Py
Pip* = Pk (k=0,1,2--),
(k 4+ 1)au
. (11)
Pt =1 — 1 il

ap iz (k+1)°

The transient behavior of the process {£(1)} is also treated in Ref. 12.

3.5 The Distribution Function G.(x)

This function plays an important role in the investigation of overflow
traffic. In the infinite line case, i.e., when p, = 1 (7 = 0, 1, 2, --+),
Palm® has proved that y.(s)(k = 0, 1, 2, ---) satisfies the following
recurrence formula:

yeals + p)
(s) = - , — (k=1,2,--), (12
7uls) 1 — via(s) + via(s + ) ) )

where yo(s) = e(s). Palm has obtained v:(s) explicitly when {r,} is a
Poisson process; that is, ¢(s) = /(A + s). Then

2(1;)._5!34‘#) s+ (F— 1)#]7

. _ (13
Vil8 *f(k+1)s(s+n)-'-[S+‘J"””] )
=\ g N

The geneml solution of the recurrence formula (12) is

( l:l — @ S‘—I-lp.—l
r=10) o(s + i) | e =0.1.2. ---
*§(x.+1)ﬁ[1_¢s+m)] = 0h2 0, 0

r=0 =0 RD(S + 'LIJ.)

where the empty product means 1. The formula (14) is proved in Refs.
10 and 11.
In the particular case po = 1, p; = p (j = 1,2, ---), ¢ =

'YL-(S) =
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q(j =1,2,--+), where p + ¢ = 1, the Laplace-Stieltjes transform v, (s)
has been given explicitly in Ref. 12. We have

Dk(&‘)
Disa(s)

Tk(s) = (k= 0,1, 2, ), (15)

where Dy(s) = 1 and

b - £ (T[]

[1 ()10 AL L= ols+ i)
gl — e(s)] i — 8§ T W
O r_Eo()Z( L .-BM[W(SHT]}
ik =1,2 -

IV. THE TRANSIENT BEHAVIOR OF {£,]}

It is easy to see that the sequence of random variables {£,} forms a
homogeneous Markov chain with transition probabilities

pit = Pl = k|t =] = fo mi(a) dF(x), (17)
where
Tjk(ﬂ?) =

D (.7 ‘{ 1) e—knr(l _ G—.Uz)j+1—k + a; (_;c) e—k#z(l _ e—u:))-_k (18)

is the conditional transition probability given that the interarrival time
6, = x (constant). For, if £, = jand 6, = z, then £,4, has a Bernoulli
distribution, either with parameters j + 1 and ¢ ** when the nth call
realizes a connection, or with parameters 7 and ¢ “* when the nth call
does not. The system is said to be in state F, at the nth step if £, = k.

Starting from the initial distribution {P,"] the distributions {P;™)
can be determined successively by the following formulas:

P Z PP (n=1,2,--+). (19)

j=k—1

However, it turns out that in many cases it is more convenient to
determine the binomial moments of {P;'™} first. By definition,

U™ = E {(E)} B § (k) P (r=0,1,2,--)  (20)
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is the rth binomial moment of {P;™}. If we suppose that U, < €, /r!
where €\ is a constant, then it can be proved that every U, exists
and U, < €7/r! where (' is a constant. Thus the distribution [P}
is uniquely determined by {U,"}. We obtain from (20) that

Pk(n) _Z( 1 r—k()Ucn) (k=0,1,2,---). (21)

This is the inversion formula of Jordan."
It is convenient to use the related quantities

V," =E {(f:) pfn} =3 (i) P (r=10,1,2,--1), (22)

whence by inversion

kak(n) = Z (—1)Fk (;) Vr(n). (23)

r=k

Now we shall prove
Theorem 1. We have U™ = 1 (n = 1,2, -++) and

LTT(H-H) = ﬂf’r( Ur(n) + V'r—l(ﬂ)) (H» = 1, 2, ey T = 1: 29 e )J (24)

where ¢, = o(ru). Further

I/-r(”) = Z (‘j‘) {Aj_rpr)['rj("} (?' = 0; 3 2: et ): (25)

j=r

where
ATTp Z( 1)( , )p,-q. (26)

Proof. First of all we note that the rth binomial moment of the Ber-
noulli distribution {} with parameters n and p, that is, that of

Q= (A) PL—p)" "t (k=0,1,,n),

is given by

B, = Z(]‘) Q= (”) P (r=20,1,--,n). (27)
k=r \T r

Using (27), we get by (18) that

n ] 1 —rur ] —rur
E{( “)WEH—J, ‘}=pj(‘i—:,_ )e +q,-(3r)e )
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{1 - =e[n(T) 40 ()]
~e[()+n(, 7))}

If we multiply both sides of (28) by P,—(") and add them for every j,
then we get (24). We obtain (25) if we put (21) into (22). This com-
pletes the proof of the theorem.

Starting from U, (r = 1,2, --.) the binomial moments U, (n =
2, 3, +++) can be obtained recursively by (24) and (25). If, specifically,
£(0) = 7and 7, = x then £ has a Bernoulli distribution with parameters
7 and ¢ ** and thus, for £(0) = 4,

U'r(l) — E{(fl)} — (:) ©r (1 = 0 1,2 ) (29)

Remark 1. Jf we introduce the generating functions

whence

(28)

Upw) = 22 U "w (30)
and
Viw) = 2 V. w" (31)
n=1

and suppose that £(0) = 7, then by (24) and (29) we get that

vtw = 2 [ (4 v | =z, 62
1 — we,

and evidently

Us(w) = 5 i" —. (33)

Note also that (21) implies that

i Pt = i( 1) *‘( )l Aw). (34)

n=1 r=k
Ezample 1. In the infinite line case, i.e.,, when p, = 1(7=0,1,2, - - -),
v, = U, and Vi(w) = Ufw) forr = 0, 1, 2, ---. If we suppose
that £(0) = 7, then by (32) we get

U = 22 [(Y+ ] c=r200 @9

— we,
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and Up(w) = w/(1 — w). The solution of these equations is given by

A 10 [

where the empty product means 1. The distribution (P") is deter-
mined by (34).

Example 2. For a loss system with m lines, i.e., when p; = 1 (j < m)
and p; = 0 (j 2 m), in the case £(0) = 7 = m we have

Vr(n) — [,vr{n] _ (7:1) [vm(nl (T — 0‘ 1, 2’ cee,m o — ]_)

and
V'(n) — Ur(n) =0 (r =m,m + 1, )
Thus,

I"rr(.'w) = ("rr(w} - (7:,1) [""m(w‘) (J' = 0: 11 2: rree,mM — ]-)
and

Viw) = Ul(w) =0  (r=mm-+1, ).
By (32) we get

Wer 1 _ m '
1 — we, [(:) + Uraw) ('r - 1) (’"‘(w)] (36)

(r=1,2 ---,m)

I"rr(w) =

and Up(w) = w/(1 — w). The solution of these equations for r = 0, 1,
2, -+, mis given by

S Oee ) @) [EQ) )

7/ Ti(w) (37)

EQ 50 k]

r(w) = I ( e ) (r=0,1,2 )

1 — we;

j=0

where

and T';(w) = 1. Finally, (7.} can be obtained by (34).
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V. THE LIMITING DISTRIBUTION {[%]

In the Markov chain {£,} the states Iy, I, -+, K, form an irre-
ducible closed set, while £, , Fn41, -+ are transient states. If either
m = o or m < o, but we restrict ourselves to the states Iy, F,, - -,
E, , then the Markov chain {£,} is irreducible. The Markov chain {£,}
is always aperiodic. Accordingly

lim P =P, (k=0,1,2,---)

always exists and is independent of the initial distribution. There are
two possibilities: either every P = 0 (k = 0, 1,2, ---) or {P}} is a
probability distribution. (In the second case P, > 0if £ < m and P, =
0if £ > m.) In the second case {P,} is the unique stationary distribu-
tion of the Markov chain {£,} and conversely if there exists a stationary
distribution then it is unique and agrees with the limiting distribution
{Pil.

In the particular case p; = 1 (j = 0, 1, 2, - --) the limiting distribu-
tion always exists, as has been proved in Ref. 10. In this special case

Py= 2 (—1)C, > 0.
r=>0
If we consider an arbitrary sequence {p,} then evidently

Py z

M

(—=1)'C, > 0,

I
-

r

whence it follows that {£,} belongs to the second class; that is, { P} is a
probability distribution.

The stationary distribution {P,} is uniquely determined by the fol-
lowing system of linear equations:

P = ; !pjkPJ- (38)
J=k—

and

> P (39)

k=1

Since in this case P, = P, for every n, we get (38) by (19). Now let
us introduce the binomial moments

U,=i(f)m (r=0,1,2--) (40)

k=r
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and define
Ve = g (f) Pil . (41)
By inversion we get, from (40),
Pk=§(—1)'*"(’,;) U, (k=0,1,2,---) (42)
and similarly, from (41),
pele = ‘i (-1 (;) V.. (43)
The binomial moments U,(r = 0, 1, 2, ---) can be obtained by the

following
Theorem 2. We have Uy = 1 and

U, =-*%_v., (r=12- ), (44)

where ¢, = ¢(ru). Further,

Vr = Z (‘f) (Ajirpr.) []j (7‘ = 0) l’ 2’ e ): (45)
j=r \l
where
ATTp, = Z:; (—1) (J L T) Pics . (46)

Proof. This theorem immediately follows from Theorem 1 if we put
U =U,, V" = V,in (24) and (25).

Remark 2. In many cases there is a simple relation between the gen-
erating funetions

Uz) = 2 P (47)
k=0
and
Viz) = X pulid" (48)
k=0

when U, (r = 0, 1, ---) can easily be obtained by (44). Tor,

oo b [d U(z)] (r=01,2-) (49)
=1

T! dz' 2=
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and

po_ 1 I:(ZfE’(Z):I (r=0,1,2 ). (50)

7! dzr

Theorem 3. The binomial moments U, (r = 0, 1, 2, ---) salisfy the
following system of linear equations:

S0 (" pv, - L= ) =0 G=012--) (1)
r=k k

Ori1

and

U-r+l = & E (f,_) (Aiirpr) [!J' (T = 01 1: 21 e )) (52)

I — orpai=r

where A "p, s defined by (46).

Progf. If we put (42) into (43) and use the relation (44) then we
get (51). If we eliminate V, from (44) and (45) then we get (52).

Remark 3. If p,, = 0 then U, = 0 for » > m, and in this case, start-
ing from U, , the unknowns U, _;, Un_2, -+, Us can be obtained
successively either by (51) or by (52) and finally Uy = 1 determines
U, . If the higher differences of p, vanish, then (52) can be used suc-
cessfully for the determination of the binomial moments U, .

Erample 3. Ifp; =1(;=0,1,2,---)then V., = U, (r=0,1,2, ---)
and, by (44),

[-"'r = e L‘rr—l (T = 1: 27 e ))
1 - Pr

whence

lrr_IL:[( & ) (T: Is21"‘) (53)

=1\l — g

and 7y = 1. The distribution { Py} is given by (42).
Example 4. Let p; = 1if j < mand p;, = 0if j = m. Then

V—r = (f“rr - (7:) er (T = 0,' ln Tt m)

and

V,=U, =0 (r=m+41,m+2, ).
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By (44)

[ N I § S mn 7 = 1.9 ...
Lr 1= lp,-[[ r—1 (i" _ 1) {m] (? 1,4, ,m),

and the solution of this equation is

)

m (?n)l
U, = J_"'_J_.L (r =01, .--,m), (5“1‘)

" m m 1
J-;n (J) C;

where C, is defined by (3). U, = 0if r > m. Finally, {Pi} is given by
(42).

Example 5. Let py = land p, = p (j = 1,2, -+ ), 0 = ¢ (7 =12,
-+, where p + ¢ = 1. Then

V, = pU. (r=1,2, ),
Vo=pUs+qPo=1—q(Uy = Us+ Us = --+).
Putting V, into (44) we get

I;TZJ?‘PF [""r—l (T= 1!2:"')

and

U, =1 =gy = Us+ Uy — =)l
_—

The solution of this system of linear equations is

: .
U, = 4 (r=01,2--),
1— g2 (=p)C;
=0

where C,is defined by (3). Finally, { Pi} is given by (42).
Ezample 6. Let py = 1, p, = p,and ¢; = ¢if j = 1,2, -, m — 1,
where p + ¢ = 1, and p; = 0if j > m. Then

Vo=1p+ Q‘Pu - ])I)M
=p+qlo— Ui+ U~ -+ + (=1)"Un] = pUn,

V, = Pl'vr - P (lm) (B (r = 1, 2: n 'rm)?

V,=U,=0 (r=m-+1,m+2, ---).
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Now U, = 1 and, by (44),

U, = v Zr( ) Cip’
E(m) .—qZ(—l)’(gp z( ) (56)

Cip’ i=j Cipt

(r=12 -, m.

The distribution { P4} is given by (42).

Ezxample 7. If, in particular, F(z) = 1 — ¢ for x = 0, then p(s) =
AN+ s)and g, = N/ (X + ru)(r = 0,1,2, ---). In this case by (24)
we have

rull, = AV, (r=1,2 ),
whence
pU'(z) = AV {(z).
Forming the coefficient of 2! we obtain that
phPy = ApraPro (k=1,2 ), (57)

G)

P.= P T Doyt P ("'_Olr—‘)”')!

whence

and P, is determined by the requirement that
S P =1
k=0

VI. THE TRANSIENT BEHAVIOR OF [£({)}

In this section we suppose that £0) = 7 always. Denote by M,(¢)
the expectation of the number of calls oceurring in the time interval
(0,¢] which find exactly j lines busy. Let

ui(s) =fn e " dM (1), (58)

which is convergent if ®(s) > 0. Now we shall prove the following
Lemma 1. Define

Ct'r(.‘s‘) = i (.:‘) ruj(s) (7' = 01 1’ 21 t ') (59)

j=r
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and

‘I',.(s) = i (.3‘) pjpu-j(s} ('r = 0) 1: 2: e )’ (60)

Jj=r

which are convergent if ®(s) > 0. Then

_ els)
Dy(s) = TT(S) (61)
and if £(0) = 7 then
_ols+ [(z) :l
®,(s) T—ots £ L\r + ¥,(s) |- (62)
Proof. Since evidently
Mit) = X Plra S 4, £ =), (63)

we have

B.(s) = ﬁ:(ﬁ) wils) = g:;l E {c_”" (i)} (64)

and similarly
w0 =5 (Do) =Sl (W) 0
J=r

Now we shall prove that

E {Eﬁjf"“ (E,;j—l) l ‘Eu = j) Bu = ‘U) Tn = y}
(7T NEAY Pt
(3 e

This follows from the fact that under the given condition £,41 has a
Bernoulli distribution either with parameters j + 1 and ¢ ** when the
nth call gives rise to a connection, or with parameters j and ¢ ** when
the nth call does not. Unconditionally we get

o (&)
s o) 5o £ )]

(66)
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E {e—”‘ (il)} = (f) (s + ru). (67)

If we add (66) for n = 1,2, -+ and (67) then we get

If £(0) = 7 then

8,(5) = o(s + 1) [(3) + a(s) +xrrr_1(s)]

(T=07112J"')1

(68)

where ¥_;(s) = 0. Thus we get (61) and (62). In many cases use of
Lemma 1 determines &.(s) (r = 0, 1, 2, ---) explicitly.
Remark 4. From (59) we obtain by inversion

wl(s) = i (—1)* (’]’) ®,(s). (69)

r=k

The functions p(s)(k = 0, 1, 2, --+) can be determined also by the
following system of linear equations:

= (k _ols +ru) 7 3 k 7
A-z=:r (T)#k(s) T —o(s + ) [(T) +ﬂ~=§:1 (?' - 1) pk#k(s):" (70

which we get if we put (59) and (60) into (62).
If we know ®,(s) (r = 0, 1, 2, ---) then P(t) can be determined by
the following
Theorem 4. The Laplace transform I (s) is given by
M) = 3 (=07 (1) 8o, (7n)

where

1 — o(s + ru)l®,(s) _ L .
GG tm T OLZe (72)

Proof. Let the rth binomial moment of { P.(¢)} be defined by

B.(1) = E{(E(:))} -y (’T) Put) (r=0,1,2 ). (73)

ﬁr(s) =

k=r
By using the results of Ref. 10 we can see that B,(t) = C"/r! for every
t = 0, where C is a constant. Thus the probability distribution {P(¢)}
is uniquely determined by its binomial moments. From (73) we get by
inversion

Pt) = 3 (—1)* (;:) B.(1). (74)

r=k
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It
w0
B.(s) = f B dl
0

and we form the Laplace transform of (74), we get (71). Now let us
determine B.(s) (r = 0,1, 2, ---).
If £0) = 4, then

5o = () e - po
(75)

[ () Q)L - re -,

where M ;(t) is defined by (63). For, if there is no call in the time inter-
val (0,7] then £(¢) has a Bernoulli distribution with parameters 7 and
¢ ' Tf the last call in the time interval (0,f] oceurs at the instant « and
in that instant the number of busy lines is j, then £(¢) has a Bernoulli
distribution, either with parameters j + 1 and ¢ ™" ’ when this call
gives rise to a connection or with parameters j and ¢* ¢ when this
call does not. If we also take into consideration that the last call oc-
curring in the time interval (0,{] may be the 1st, 2nd, - - -, nth, -- - one,
then we get (75). Forming the Laplace transform of (74) we get

1 — (s +ru) (i
NRIREFEETSI
s+ ru r (76)

CE[ )+ u )]

where g;(s) is defined by (58). By using the notations (59) and (60)
we can write also that

g.(s) = LT els + ) {(t) + @,(s) +\Il,1(s)}. (77)
s+ ru U

Taking into consideration the relation (68) we obtain finally

e(s + ru)  &(s)
(s +ru) (s +ru)’

B.(s) = (78)

which was to be proved.
Example 8. Define

T o(s + iu)
(-,-(b) - :1[;[0 (rw) ( 0 ]-: = ) (79)
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and
C,(s) =1.
Ifp,=1(;=0,1,2 --) and £0) = 4, then ¥,(s) = &,(s) (r =
0,1,2 ---) and, by (62), we get ‘

_ els + ) (z) ] —01 ...
09) = 2 T rane] =000, 60

where ®_;(s) = 0. The solution of this recurrence formula is

Bo(s) = Oo(s) 3 (“) ! (81)

= \I/ Cials)’

where C,(s) is defined by (79).
Example 9. 1f p; = 1 when 7 < mand p; = 0 when j = m and £(0) =
1 = m, then

V. (s) = @,(s) — (T) P,.(s) (r=0,1,---,m)

and
V. (s) = ®.(s) =0 (r=m+4+1,m+2,---).
By (62)

_ pls 4 ) ? f m
¢, (s) = rrm |:<r) + @, 4(s) (T‘ _ 1) ‘IJ,,,(S)] (82)

for r = 1,2, ---, m. The solution of this equation is

v =g E e [E() o]

Ci(s) (83)

[EOwllE Ol

where ';(s) is defined by (79).

j=0

VII. THE LIMITING DISTRIBUTION {P;*}

Now we shall prove
Theorem &, If F(z) s not a lattice distribution and its mean « 1s finile,
then the limiting distribution
llmPk(ﬁ)=Pk* (]C=0,1,)

{00
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exists and s independent of the initial distribution. We have

* _ PP . — 9 ...
Pk+1 (k + l)a# (I" 0: ]= y ) (84)
and
x« _ 1 _ L5 pls ,
Pu = 1 an 5 k + 1 N (8.))

where { Py} s defined by (38).
Proof. By the theory of Markov chains we ean conclude that
tim M8 _ P

(.- t [43

(86)

Furthermore, it is clear that the difference of the number of transitions
E, — Ei1 and Eyyy — Iy oceurring in the time interval (0,#] is at most
1. Accordingly, if we denote by N(¢) the expectation of the number of
transitions ¥4 — K oceurring in the time interval (0,f], then

| peddi(t) — Ni(B) ] =1 (87)
for all ¢t = 0. Further,
t
N(t) = (B + 1);;]; Pra(u) du, (88)
for, if we consider the process {£(¢)} only at those instants when there

is state K4y, , then the transitions K, — E; form a Poisson process of
density (k + 1)u. Thus, by (86), (87), and (88),

. t 4
Iim m f P‘_+1(‘u) du = lim Nﬁ(t) = lim piﬂf&(t) _ 'kak :
t-am t 0 -0 (B3] [23
that is,
.1 f‘ PP
Z i = Pk = 2 ..., C
fim 7 J, Prnlw) du = iy (B0 L2 (89)

If we prove that the limiting distribution

lim Pp(t) = Pu* (k=0,1,2, --+)

lsw

exists, then it follows by (89) that

_ PP
(k 4+ 1)ag

*
Py

(k=0,1.2,---), (90)
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and so

Po*=1—-Y Pp*=1——) ——.
° ;;Zc:] FH ap = (k+ 1)

To prove the existence of the limiting distribution we need the follow-
ing auxiliary theorem: If F(z) is not a lattice distribution, then

lim pkMk(t + hi)l - PkMk(t)
ts0

exists for every & > 0 and is independent of & and the initial state. This
is a consequence of a theorem of Blackwell."* For the time differences be-
tween successive transitions E; — Fi,1 are identically distributed, in-
dependent, positive random variables, and, if F(z) is not a lattice dis-
tribution, then these random variables have no lattice distribution
either. If (92) exists, then it follows that

lir = lim
t-s0 h. t>m t o

(91)

(92)

(k=0.1,2---). (93)

Now, by the theorem of total probability, we can write

Pi(t) = (;C) e (1 = ™)L — F(1)]

w0 t (94)
s f mt — WL — F(t — w)] dM;(w),

i=k—1

where 7 (¢) is defined by (18) and it is supposed that £(0) = <. The
event £(t) = k may occur in several mutually exclusive ways: there is
no call in the time interval (0,f] and, with the exception of %, all the ¢
connections terminate by ¢; or the last call in the time interval (0,¢] is
the nth (n = 1,2, ---) one and it finds state &; (j = &k — 1, k, ---).
If ., = u (0 < uw = t), then during the time interval (,f] no new call
arrives [the probability of which is 1 — F(¢{ — u)] and with the excep-
tion of k connections every connection terminates by ¢ [the probability
of which is m (¢ — u)].

Applying Blackwell’s theorem to (94) and using o < =, it follows
that

lim P(t) = P* (k=0,1,+-)

t—som

exists and

Pp* = ,;1 Pit*Pj, (95)
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where
pat = L f: ()l — F(2)] da. (96)
It is easy to see from (95) that [P.*] is a probability distribution.
VIII. THE DETERMINATION OF 7i(s)

Define

Dk(s)
Digya(s)’

where Dy(s) = 1. We are going to determine D,(s)(r = 1,2, --+).
Write D,(s) in the following form:

ve(s) = f ¢ dGy(z) = (97)

D(s) = 3 (J) ADy(s), (98)

=0

where A’Dy(s) is the jth difference of D,(s) at r = 0; that is,

i s
A'Difs) = X (=1 (*’2’) Dils). (99)
Then D,(s) is uniquely determined by its differences.

Now we shall prove

Theorem 6. Slartmg from Do(s) = A°Dy(s) = 1 he functzons D,(s)
(r =0,1,2, ---) and the differences A’Dy(s) (j = 0, 1,2, ---) can be
obtained successwely by the recurrence formulas

IS 1)"]() ()

, (100)
= ol + ) 3 (=1 (;) (p:Dsua(s) + D;(s)]
and
A YV o— W(S + 7.‘1) Ji i+1
AD(s) = ETES Y ()(A p)A T D(s)  (101)

respectively. Here

Aj_"ps=§(—l)"(j:i)p;_,. (102)

v=0
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Proof. By the theorem of total probability we can write for » = 0, 1,
2, - -- that

G.—(T) _ j: ; (;) e—ifw (1 _ e—#y)r—i
AplGip(e —y) * - * Gz — y) (103)

+ ¢Gi(x —y) % x Gz — y)] dF(y),

where the empty convolution product is equal to 1. Let us consider the
instant of a transition F,_; — FE, and measure time from this instant.
Then G,(z) is the probability that the next transition E, — F,;; occurs
in the time interval (0,z]. Thisevent may occurin the following mutually
exclusive ways: the first call in the time interval (0,z] arrives at the
instant (0 < y = 2), it finds state E; (j = 0, 1, -+, r), the prob-

ability of which is
L R —py\r—3i
.)e 1 —ce ,
()era-e
and, in the time interval (y,2], a transition &, — E,;. occurs, the prob-
ability of which is
PG — y) * - xGx — y) + ¢Gi(x — y) * -+ *»G(z — y).
Introduce the notation
0.5(s) = (:)f UL = )T dF(x)  (104)
. 0

and form the Laplace-Stieltjes transform of (103); then

‘Yr(s) = z;'; qd(s) [.’P; 'Irll 'Yi(s) + q; ﬁ 'Yi(s):l ('r = 0: ]1 2: T ')s

i=j+ i=j

where the empty product is 1. Now using (97) we find

Du(s) = Z (S Dyuls) + D)) (r=0,1,2, ---). (105)

This is already a recurrence formula for the determination of D,(s)
(r=20,1,2, ---), but the coefficients can be simplified further.
If we form

D) = 3 (=107 () Dio),
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where D;(s) is replaced by (105), and take into consideration that

>’: (—1)* (); (s) = (=) (j) (s +ju),  (106)

then we obtain
M) = oo + ) B (=07 (1) 1Dia(s) + @D (107

Now, comparing (99) and (107), we obtain (100).
On the other hand, by (107) it follows that
i

A'Dy(s) = (s + ju)AD(s) + e(s + ju) 2 —1>"'()p.AD (s),

whence
ADu(s) = EEE I D) (108)
and here
J y . . .
AlpoADy(s)] Z() A7) AT D(s), (109)
=0
where

Ap; = Zﬂ (_-1)’(J : z) Pi-v - (110)
This proves (101).
Example 10. In the infinite line case, i.e,, when p, = 1 (j = 0, 1, 2,
--), (101) has the following simple form:

i) = Lo O i) =02, 0, ()
whence
- )
; 71— els + w)]
A ol S) = — 4
Du(s) .ItIu[ o(s + ip) (112)
and

_ T (1 — ols + iu)
v =R (I(G?).
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Example 11. If pp = land p; = p (7 = 1,2, - - -), then (101) reduces
to the following difference equation:

i+l _l—ﬂo(s + Ju) i
AT'Dy(s) ot n) A’'Dy(s)
(114)
+ o~ g 012,00,
pe(s)
A simple caleulation shows that the solution of (114) is
A 1 — ‘P(S + ’5#)}
ADy(s) = {PLIU[_S )
[1 — o(s)] 91— ols + i) (H15)
_ il = i8] — ¢ u
Cope(s) E( QH[ pe(s + iu) ]}
and finally,
D,(s) = Z (;) A’Dy(8). (116)

Theorem 7. Suppose that £(0) = 0 and under this eondition denote by
M. (t) the expectation of the number of calls arriving in the time inlerval
(0,t] which find exactly k lines busy. Let

ur(s) f e L dM(¢). (117)
0

Then
1
pk(s) - 1 - kar;H(S)m-(S) y (118)

where Dy (s) 1s given by Theorem 6 and pi(s) is given by
wi) = 3 (=07 (7)), (119)

where ®.(s) can be obtained by Lemma 1.

Proof. The expected number of transitions £, — Iy oceurring in
the time interval (0,] is evidently p M (). The time differences between
consecutive transitions I, — E.., are identically distributed, independ-
ent random variables with distribution function R:(z). By using renewal
theory we can write that

peM (1) = Go(t) » Gy(t) * -+ - = G(t)
# [I(1) + Ri(t) + Ru(t) « Ry(t) + -+ -],
where /(¢) = 1if t = 0 and I(¢) = 0if { < 0. Forming the Laplace-

(120)
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Stieltjes transform of (121), we obtain

'Y(](SJ‘Y[(S.)‘ N "Yj;(S) 1
Dl 8 - - = 5
Pul ) L — pils) Dia(s)[1 — pi(s)]

(121)

whence (118) follows.

Since we know the distribution funetions Gi(x) and Ri(z) (K = 0, 1,
9, --+), the distribution of the number of transitions £y — K4 oceur-
ring in the time interval (0,f] can he obtained easily.

IX. THE OVERFLOW TRAFFIC

Suppose that p; = 1 (j = 0, 1, 2, ---) and that the telephone lines
are numbered by 1, 2, 3, ---. Further suppose that an incoming call
realizes a connection through the idle line that has the lowest serial
number. Consider the group (1, 2, - - -, m). Denote by .. the proba-
bility that the nth call finds every line busy in the group (1, 2, - -+, m).
The distances between successive calls which find every line busy in the
group (1, 2, -+, m) are evidently identically distributed, independent
random variables with distribution funection, say, G.(x).

Palm® proved that

1
o ) _ -
Tm = Llil; Tom m (m> i ) (122)
2 C,

=0 r

where (', is defined by (3). This is in agreement with (6). In this case
it is easy to see that =, = P,.", where the distribution { P} is de-
fined in Example 2 of Section IV.

In Refs. 10 and 11 it is shown that

i (m) ﬁ |:] — p(s + iu}i‘
[ o deue) = S ol et m) J_ (133
0 S (-m+ ])H‘:l —tp(8+1ﬂ]:|
=0 r =0 o(s + iu)
where the empty product means 1. It is easy to see that G, (x) agrees
with the corresponding @,.(2) defined in Section VIII when p; = 1
(j=0,1,2, -.). Thus (123) can be obtained from (97) and (113).
Remark 5. Denote by T',, the expectation of the random variable
which is the difference of call numbers of successive calls, both of which

find all lines busy in the group (1, 2, -+, m). Knowing T',,, we can
write that

Tw = lim 7" =

1
— 124)
n—>o0 F,,, ( -
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and
f xdG,(x) = al,,. (125)
0

In Ref. 6 it is shown that I, (r = 1, 2, ---) satisfies the following
recurrence formula:

r=qo(Ti+To+ -+ 1) + ga(Ta+ T+ -+« +T,)
+ e + Qr.r—2(rr-1 + F,-} + QF.T—lFr —|— 1’

(126)

where

i = (J)-[ ML= ) dF(x)  (§=0,1,---,7). (127)
0
The solution of (126) is given by

r,=i(’f)fl(1_“"’) (r=1,2---). (128)

=0 \J/ =1 @i
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